Face recognition using nonparametric-weighted Fisherfaces

نویسندگان

  • Dong-Lin Li
  • Mukesh Prasad
  • Sheng-Chih Hsu
  • Chao-Ting Hong
  • Chin-Teng Lin
چکیده

This study presents an appearance-based face recognition scheme called the nonparametric-weighted Fisherfaces (NW-Fisherfaces). Pixels in a facial image are considered as coordinates in a high-dimensional space and are transformed into a face subspace for analysis by using nonparametric-weighted feature extraction (NWFE). According to previous studies of hyperspectral image classification, NWFE is a powerful tool for extracting hyperspectral image features. The Fisherfaces method maximizes the ratio of between-class scatter to that of within-class scatter. In this study, the proposed NW-Fisherfaces weighted the between-class scatter to emphasize the boundary structure of the transformed face subspace and, therefore, enhances the separability for different persons’ face. The proposed NW-Fisherfaces was compared with Orthogonal Laplacianfaces, Eigenfaces, Fisherfaces, direct linear discriminant analysis, and null space linear discriminant analysis methods for tests on five facial databases. Experimental results showed that the proposed approach outperforms other feature extraction methods for most databases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition Using L-Fisherfaces

An appearance-based face recognition approach called the L-Fisherfaces is proposed in this paper, By using Local Fisher Discriminant Embedding (LFDE), the face images are mapped into a face subspace for analysis. Different from Linear Discriminant Analysis (LDA), which effectively sees only the Euclidean structure of face space, LFDE finds an embedding that preserves local information, and obta...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Facial Emotion Recognition Using Nonparametric Weighted Feature Extraction and Fuzzy Classifier

The most facial emotion recognition methods use the geometrical features of face such as eye opening and mouth opening, which extraction of them is a hard and complicated task. But, in this paper, we propose to use the discriminant features simply extracted by nonparametric weighted feature extraction (NWFE). Moreover, to model the inherent uncertainties contained in the emotional features, we ...

متن کامل

Combined Fisherfaces framework

In this paper, a Complex LDA based combined Fisherfaces framework, coined Complex Fisherfaces, is developed for face feature extraction and recognition. In this framework, Principal Component Analysis (PCA) and Kernel PCA (KPCA) are first used for feature extraction. Then, the resulting PCA-based linear features and KPCA-based nonlinear features are integrated by complex vectors and, Complex LD...

متن کامل

Face Recognition using SIFT Features

Face recognition has many important practical applications, like surveillance and access control. It is concerned with the problem of correctly identifying face images and assigning them to persons in a database. This paper proposes using SIFT features [4] for the recognition process. The new technique is compared with well-established face recognition algorithms, namely Eigenfaces [7] and Fish...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012